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Abstract

The dynamical process of generation of entanglement between subsystems
of an evolving quantum system is analysed in this paper. We consider one
of the simplest possible continuous systems in which such a process can be
rigorously studied: a quantum ‘heavy’ particle (the system) interacting via zero
range forces with a lighter particle (the environment). In a three-dimensional
model we study the asymptotic dynamics when the ratio between the masses
of the light and the heavy particle is very small. The effect of decoherence on
the heavy particle induced by the interaction is explicitly computed.

PACS numbers: 02.30.Tb, 03.65.Nk, 03.65.Yz

1. Introduction

The aim of this paper is to give a rigorous treatment of the asymptotic dynamics of a quantum
particle undergoing a single scattering event with a much lighter particle. A detailed knowledge
of such a process is the necessary preliminary step for the formulation of more realistic models
for the dynamics of a quantum particle evolving in an environment made up of many light
particles. In this perspective this problem was investigated by Joos and Zeh [1] first and by
many others ([2-6] and references therein) successively.

Starting from a dynamical hypothesis about a single scattering event, since then referred
to as Joos and Zeh formula, those authors deduced a master equation for the reduced density
matrix of the heavy particle, from where they computed the characteristic times of the processes
of decoherence and dissipation induced by the interaction.

Joos and Zeh noted that as a consequence of a small mass ratio two time scales characterize
the evolution of the two particles: a slow one relative to the heavy particle and a much faster
one relative to the light particle.

In order to specify the details of their idea let us suppose that the state of the two-particle
system is initially given in a product form of the type ¢(R)x (r) where R and r describe
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respectively the spatial coordinates of the heavy particle and of the light one. The authors
proposed that, in the roughest approximation, the scattering process would be described by
the instantaneous transition

(R X (r) = @(R)(S" ) (r) (D

where S® is the scattering operator for the light particle corresponding to the heavy one fixed
at the position R. The R dependence of the scattering operator indicates that entanglement has
taken place in the sense that the state of the scattered light particle keeps track of the position
of the heavy one.

Details of the process of entanglement dynamically induced by a single scattering event,
outlined above, were analysed in a series of recent papers ([7-9]) for different models of two-
body interaction. In [8, 9] the authors gave rigorous estimates of the asymptotic dynamics, in
the limit of a small mass ratio, for particles interacting respectively via a point interaction in
dimension one and for a class of smooth potential in three dimensions. Their results can be
considered as a rigorous formulation of the Joos and Zeh formula (1).

In this paper we will give a detailed analysis of the dynamics of a three-dimensional
system made up of two quantum particles interacting via a repulsive §-like potential. In order
to define the model we need to introduce some notation and to recall few results concerning
point interactions in three dimensions. As is well known a sequence of Schrédinger operators
with potentials approximating a distribution supported by a single point generically tends to
the free Laplacian in dimension greater than one. A different renormalization procedure has
to be chosen to define a non-trivial zero range potential Hamiltonian. A general method to
obtain such a kind of Hamiltonian is to analyse all the possible self-adjoint extensions of the
Laplacian restricted to functions vanishing in a neighbourhood of the diffusion centre (see
e.g. [10] for details). In dimension three different self-adjoint extensions are characterized
by singular boundary conditions at the position of the interaction centre in the way concisely
described below.

In L2(R?) there is a family of self-adjoint extensions H,., of the Laplacian restricted to
the subspace C§° (R3\{y}) of the infinitely differentiable functions with compact support not
containing a single point y € R?. Each operator in this family is indexed by a real parameter
—00 < o < +00 and it is defined in the following way: its domain is

D(Hy,y) = {¥ € L’R)|Y = ¢ +qGo(- — y). ¢ € Hp.(R?),
V¢ € L*(RY), Ap € L*(R%), g € C, lim (Y (x) — gGo(x — y)) =agq} (2)
X—>y

where G is the Green function for the free Laplacian for A = 0,
e Vlx=x']

Gx—x)=CA+N)"x—x)= ———, A >=0. (3)
4|x — x'|

The action of H, , on D(H,,,) is
(Ha,y + MY = (A + 1)y “4)

The corresponding resolvent operator is the rank-one perturbation of the free resolvent whose
integral kernel is

(Hoy + 1) (x, x) = ®)

+ — .
4 4 |x — y| 4wy — x’|

eVl R\ e VAl eV
7+
4 |x — x|

From the explicit form (5) of the resolvent, it is clear that the free Laplacian is obtained when
|| — oo and that the ‘strength’ of interaction reaches its maximum for ¢ = 0. A detailed
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analysis (see e.g. [10]) shows in fact that —(4wa) ™! represents the scattering length relative
to H, .

Analysing the singularities of resolvent (5) one can easily find the spectral structure of
H, . For any o and y the essential spectrum is purely absolutely continuous and covers the
nonnegative real axis

Uess(Ha,y) = O’ac(Hat,y) = [0, OO) (6)

If o < 0 the point spectrum of H, , consists of a single point o,(H,,,) = —(4wa)?. For
a = 0 (the only case we are going to consider in the following) the operator H, , has no
eigenvalues, i.e. 0,(Hy ) = <.

In order to simplify notation we will use H, instead of H,o. By inverse-Laplace
transforming resolvent (5) it is possible to obtain the explicit form of the propagator e "« of
H, (see [14, 15])

e, y) = e (x — y) + e (2] 4|y
[x[1yl
8rait [
X[yl Jo
where e is the free propagator.
For every k € R? the generalized eigenfunction of H,, y corresponding to the energy
E = |k|? in the continuous spectrum is given in closed form by

e~ 4 o= o (1 x| 4 |y| + u) du (7)

—it Hy

elky eTFilkllx—y
Ao +ilk] |x —y|

Using the generalized eigenfunctions @2, it is possible to define the unitary maps (see e.g.
[13]) FL : LA(R?) — L2(R?)

O (x, k) = +

®)

. 1 —
y e i y
[Pl =5 Jim s [ LG fw s ©)
where By indicates the sphere of radius R in R. The wave operators (see e.g. [11, 12]) for
the Hamiltonian H, ,

QL =s— lim " g7 (10)
T—> 100

are unitary for @ > 0 and are related to 2. by

QL= (F)F (@) =F'A (11)
where F indicates the usual Fourier transform. Now we have all the ingredients to define our
two-particle model. To simplify notation we fix M = 1 and & = 1 and we define ¢ = 7;.
In the system of coordinates of the centre of mass x = Rl:i’ and of the relative coordinate
y = r — R, the Hamiltonian for a three-dimensional system of two particles interacting via
point interaction in LZ(R3, dx) ® L2(R3, dy) reads

H® = H) ® H!" (12
where v = (1 + ¢) is the total mass of the system, 4 = 1 is the reduced mass and H;
indicates the free Hamiltonian relative to a particle of mass v. Note that in (12) with H}* we
mean ﬁHa suggesting that a rescaling of the coupling constant & has been made (compare
with the cases of two-body potentials [8, 9]).

We consider the problem

WE (1)
at

i = HEWE (1) (13)
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WEO; R, 1) = p(R)x(r) (14)

in the limit of small ¢. Because of the particular initial conditions (14) the positions of the
two particles are uncorrelated at time zero. Nevertheless the dynamics is not factorized with
respect to the coordinates R and r. The mutual interaction of the two particles, described by the
static §-like potential in the relative coordinate, will eventually produce correlations between
the positions of the two particles. Our main result is expressed in the following theorem where
we indicate by |-|| the L2(R®)-norm.

Theorem 1.1. There exist two constants A > 0 and B > 0 such that for any initial state (14)
and any fixed @ > 0 and t > 0, one has

e\l
1w -l <a(>) +Be (1)
where
Wi (1) = e Mgy (16)
1
Hg =Hy® EHO 17
ViR, ) = p(R)[(2F) %] (18)

and the constants A and B depend only on the initial state (see below for details) and on the
constant «.

The result of theorem 1.1 expressed by (16)—(18) can be thought as an exact formulation of
the Joos and Zeh conjecture (1) for the special case of point interactions in three dimensions.
As stressed by many authors (see e.g. [3, 4, 8, 9],) formula (1) cannot be correct, as it stands,
inasmuch as one is looking for a relation between initial and scattering states and not between
in and out states. Roughly speaking (18) shows that the approximation formula holds true if

in (1) the scattering matrix S is replaced with the wave operator (Qf )71.

The specific dependence of constants A and B in (15) on the initial state will be analysed
in the following section. Expressed in the language of weighted Sobolev spaces H™* (see
e.g. [16])

H™ RN ={ue PR : [A+]- )70 = A) 2l e, < +00}
with L? = H% and H™ = H™Y, we will assume that initial state satisfies

Condition A. (R) € H"'(R*) and x(r) € H"'(R*) N HX(R?).

2. Proof of the theorem 1.1

Following the same line as in [8, 9] we prove theorem 1.1 in three steps, each one consisting
of the proof of a lemma.
Lemma 2.1. If condition A is satisfied then there exists a constant C; > 0 such that, for any
t € RY, one has

|we@) —wi@| < Cie (19)
where we defined

1 R+e

Wi(t; R, r) = / dx’ dy’ e ' o < d

RS 1+¢

1(1+e)

s e — RY X (Y +x).
(20)

- x’) p(x)e™
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Proof. Note that W*(7) is the result of the evolution generated by the Hamiltonian H¢ of the
initial state W (0; x, y) = (p(x — ]%) X (x + ]yTg) Making use of the unitarity of the evolution
we obtain

|we @) —wi) | = |we ) — wi ) @1)

:/ﬂ{ﬁdxdy‘g&(x— 24 )X<x+i>—<p(x)x(x+y)2. (22)

I+¢ 1+e¢
We get then the following estimate:
2
[wr© - v O] < / LA dylyPIVa(e)x (x + )P (23)
R

The rhs of the last inequality is finite for ¢ € H LI(R?) and x € H"'(R?) and the proof is
completed with

Ci= / dx dyly]* Ve (@) x (x + )% 24)
RS O

As we mentioned before the evolution of the system in the limit of small ¢ has two different
time scales. In the second lemma we quantify this statement giving a rigorous estimate of how
much the free evolution of the scattering state [le X](y) approximates the exact evolution.

Lemma 2.2. If condition A is satisfied then there exists a constant C, > 0 such that for any
t > 0 one has

|ws0) - v < ¢ (f) (25)
where
Wit R, r) = 5 dx’ e i Ho (RI:‘Zr —x’> o(x) (26)
« /R Ay e G = R = )R] (+x)]0), (26)

Proof. Following the notation of [9] we define x,(y) = x (x + y). By direct computation we
have

e e 2 /=it ’
| w5 —wi] =/6dxdy /de’dye e (x — X (x)
R R

2
_jlre _ _ilee

[y = )[R [0 = e ) e D] - 27
Define the unitary operator Qf = ¢"#«e~1"" and its inverse (SZJ{)_1 = el"f e~i"Ha | Using
the unitarity of the free propagator e~ we obtain

2
2 _ -1
[ws@ - wim]" = / dxlp()? f ([ ]o) = [(95) ] o) - (28)
R’ R’ e

Due to the unitarity of the operators QI and 2, we have

”(Q;1 - (Qt)il)x ||L2(R3) = ” (Q+ - Q;)QIIX ||L2(R3)' (29)
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In the following we will prove that for any n € L%(R3)

C/

(2 =)0 ey < = for T — oo. (30)
T4
In fact from (11) we have
- 1 Ciky
[QunlC) = [ Fn] () = 755 / (dkdy®, (e, k) e (). (31)
R
whereas from its definition
[2en] &) = f  dzdy’ ey, 2) ez — yn(y). (32)
RS
By explicit computation we have
(R — Q) 0 = Won + War (33)
with
2 1 o1 e T
[(Won] (Ix]) = ——/ g(yDdlyl (34)
@) Ix Jo  |x[> = Iy
and
8miae 1 (% gyD [ i
[Wenl(Ix]) = — — djy|&—=% ds e #F sin s|y|
2m)* x| Jo Iyl Jo
1 (2 -
X <m - e_]‘ |4t‘ ‘ A/ —ITT ezzerfc(z)> (35)
with
x| )
and g(xD) = |x[7 [ n(lx], xa, x,) dS2y.
(36)

7z =/—it (4mx +is +1—
2t
We start with an estimate for W;. From (34) we have
o0
/ lg(IyDIPK-(y) dly]
0

16
IWonll, g < =
®) = (277)3
1 1 2
) 25| o)
T

_ P
4t
—=d§ <
167>

VE
‘We obtain then
oo 1 oo
/ |g<|y|>|2d|y|+;f0 |g(|y|>|2|y|d|y|] (38)

IWonll2, g, < Do L
The estimate for the term W, n in (35) will be given in few steps. We write W, n as the sum of

where
1 / * 1 —cos (&
> Jo

K (Iy]) =
1672

(-4

3

four terms
8mia 1 o0 gy = Cislal e
(Wonl(Ix]) = —=— [ diy|==— [ dse M sins|y|e"s
(2m)* x| Jo Iyl Jo
- y2 )2
e i — 1 . 1—ell e 1 1
X e T —
dra+is  dma+is Ao +is 4na+is+i%
1
— ) |. (39)
12

Jxf? - 2
—e i [ /=imr e erfc(z) — -
4o +1is +
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‘We have then

IWanll 72y < Wi+ Wa+ Wi + Wy (40)
with
> R {())) b ’
Wi =D d d S 1— 4_ 41
| /0 |x|/0 el e ( ), 1yl | () (41)
o | 2 e ey e ’
W2:2D/ d|x| 1—cos— / ds —S el 1yl ) (s) 42)
0 4t 0 4o +is [y]
R e e i gy ’
W = — dix||x / ds S( >(S) 43)
T 42 ] 0 (4na+1s)(4na+1s+1|x‘) [yl |y|
[o¢] [o.¢] i N 1
Wy=D / d|x| f dse ¥ [ /=irreTerfe(z) - ————
0 0 47m+1s+1'x‘
(IyD) ’
xs<g|y| HE |) (s)‘ (44)
where
1602 o
= and SfUyDs lyD(s) = sins|y| f(ly]) d|yl
0
is the Fourier sin transform of f(|y|). Let us define
1
.s(g('y')(l f«) D) s3>0
h(s) = { 4ma +is [y 45)

0 s <0
so that
Wi =27 DI 0,00y < 27 DIRNT2 @) = 27 D 11211725

where /1 is the usual one-dimensional Fourier transform of (s). A straightforward computation
gives
Dy [ 21,2
Wi<— lg(yDI” [y~ dlyl. (46)
0

It is easily seen from the definition of W, that
. 2
o 1 — a2 e—ls\xl
[Tat s (BB ) ] @
0 dra +1is [y]
An integration by parts in the variable s and an estimate of the integral in the variable |x| for

large T give
2
}. (48)

W<3 1/Oool|||(||>|2+food
) Grar yllg(ly s

_ 2
1 — cos T

(1+x[*)?

o0
W, = 20/ dx|
0

(- gy S o

Ao +1s)
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We rewrite Wj in the following way:

D 00 2 00 1— d e—islx\
W3=_2/ d|x|’ |X| 2 / S ( dAZ) . - x|
47= Jo 1+ x| 0 (Ara+is)(dmra +is +i57)
2
gUyDh ;w2
s (5P ) o 9)
1yl
and we use the inequality
" 1 a1 )
— | < |——— V£ >0, VmeNy, and VxeR’,
ds™ 4zra +is + i'zx—r‘ ds™ 4ma +is
to obtain
2
b 1 [, ey s e
Wy < = —— + - — - .
3 rz(mUwA |ﬂme|‘£ s( mJ  —— (50)
In the Wy term for t — 0o we have |z| — oo and we can use the asymptotic expansion
ezzerfc( ) ! ! + !
' 7) — =— ol —=|.
JTzZ 2773 2
From the inequality
T (Ferter) - —= )| < |—= for 2| (51)
— | e erfe(z) — < or |z|] - oo
dzm DT e N ¢

Vm € Ny, we obtain

D % 1 o
Wy, < — dlx| —— d
) ﬂﬂ'“ﬂwﬂ *

2
@—i> o ﬁ@wuﬁwow
ds (4mo +is + 'x‘) ¥l

12
(52)
With the same estimate used in (49) it is easily seen that
2
D ™ d 1 2
wo< 20 [Cel (-5 s (8D ) @] 63
272 Jo ds ) (4ma +1is)3 [y

Note that if € L%(R3) all the integrals in (38), (46), (48), (50), (53) are finite and we get
estimate (30). From (28) and (29) in order to conclude the proof of lemma 2.2 we need to
show that if the initial state satisfies condition A then n = Q;'x, € L%(]R3 ) for every x € R?
and

|2 5

We omit the details of this last result, which follows easily from an integration by parts in the
explicit definition of the L3 norm of Q' x,. O

sy S CU+1xP)2, (54)

To conclude the proof of theorem 1.1 we will show that the evolution of the initial state
9(x)[Q; " x:](») according to the dynamics generated by the Hamiltonian 1= Hy ® £ H

approximate at the order ¢ the dynamics of the initial state go(R)[(Qf )~ 'x1(r) generated by
the Hamiltonian Hj.
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Using the identity
— — /
e_ilr?HU 8(}" r)+(R R) e_ilgﬁ[HO(r_r/_(R_R/))
I+e¢
= MR — Ry — 1) (35)
we obtain

w5, R) = / dr'dR e "M (R — Ry e 't (r — 1)
R(w

er' + R’ o1 er'+ R N ' — R) (56)
x . r' — R).
L X\ T v

We prove the last lemma

Lemma 2.3. There exists a constant C3 > 0 such that for any t € R one has

w5 (1) — v (0)| < Cse (57)

Proof. Given the unitarity of the free propagator

er+ R |:Ql 8r+R+ i| R
(p<1+8> +X<1+8 ) r )

2

| i) —we )| :/ dR dr
RG

—p (R [Q'X(R+)](r — R) (58)

where we used the relation [ (QF )_l x]() = [Q7'xr](r — R). In the system of coordinates
of the centre of mass this reads

|ws @) —w o = /R dx dyle ([, x (x + 9] )

2

e _1 e
—o (=) o (- )]0 (59
In the limit of small € we can write
[w50) - v <o [ avayyf |9 [ome; xm]f
< 2 ((o1) + (02)). (60)

Let us prove that terms (¢1), (¢2) in (60) are finite. Using definition (11) of Q;l and the
explicit form of the generalized functions &, (x, k) we obtain

o0 = [ axaiipePlyPle; xom)
R

1\? ' 1 ilk||z|
2 —ikz ©
= <_> / dx dk|V,(x)]| Vk/ dz <e o )xx(z)
2 ) Jgs R 4o —ilk| |zl

< (03) + (¢4). (61)

2
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The estimate of term (¢3) follows easily

1 3
(<>3>=(2—) / dx|vx<o(x>|2/ dzllzlxx ()1
v R} R3
1\’ 5
<(2—) / ax |V, ()] / dzll2l )]
T R3 R3

1 3
+ (E) / dx | Ve () [*x|? IIX(Z)IILZ(Rz) (62)
For the term (¢4) we have
d 1 ellkllz] 2
(04):( )/dxdk|v dlkl/ dva){x(Z) < (05) + (06)
(63)
with
; 2
Vep () / el
5) = dxdk———F—F"—— d . 64
= Joe ¥ K ray + kP | Jos g 2@ 4

In (64) the only problem is represented by the integral in the variable z. Making explicit the x

dependence of yx,(z) we have
Gilklz] eilkllE—x]
[LaSxern| = |[ e @ ep)!
S b4 R & —x|(1+]&]%)>

2 2 1 _
< </deélx(§)| (I+1&] )> ([Rs 3 B —x|2(1+IEI2)>

2
1
|- 1(1+] - +x]2)2

2

=1+ X, (65)

L2(R%)
where we used Holder’s inequality. An explicit computation shows that

2
7[2

< —. (66)
|x]

1
1
1A+ ]+ )

We finally estimate the term

IV o (x)]? / i
6)= | dxdk—————— || dzy.(z)e *l<
(6) /R YK Gy + kP | J 0@

To ensure convergence we need that the integral in the variable z goes to zero at infinity faster
than 1/|k|'/2. In fact integrating by parts

2
[ 4 g —xl| / eilllE—x
[ aexcore ()Y
eilkllE—x| 2
R Gl

2
(67)

2

dzy (z +x) Ml
R3

(68)

1
< W/ i |Vex @+ s

We are left to show that also term (¢2)

(02) = /dexdywnﬂyﬁ V.2 o (69)
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is finite. Note that

Vo2 )| Z|ax, 2 %)) Z|s2 Vi) (70)

i=1
with f; x(2) = 0y, xx(2) = Oy, x (2 +x) = fi(z+x). It follows that the estimate for (¢2) can
be obtained with the same procedure used for (¢1), the only difference being that we must
replace x (x + z) with Vx (x +z). We conclude that all the integrals are finite if condition A is
satisfied. 0

3. Decoherence induced by scattering

As was done in [8, 9] we want to apply the results obtained in this paper to the analysis of the
decoherence effects induced by a single scattering event. The often called ‘naive’ interpretation
of decoherence in quantum systems will be the main idea behind the considerations which
follow. Roughly speaking that interpretation insists on the almost obvious statement that
entanglement causes a diffusion of quantum correlations out of every subsystem in interaction
with a large environment.

The mechanism is essentially described as follows: suppose we have a subsystem of a
large system which is initially in a pure state. Entanglement induced by the interaction of the
subsystem with its environment forces the quantum correlations between local observables to
migrate into the whole system. The trace over the exterior degrees of freedom partially cancels
correlations making the reduced density matrix, describing the evolution of the subsystem, a
statistical mixture.

In the following we will find an estimate for the effect of decoherence resulting from a
single scattering event at the level of approximation of the dynamics given by the Joos and
Zeh formula. As was done in the one-dimensional case [8], the estimate allows us to compute
how much quantum interference observed in the evolution of the state of the heavy particle,
initially in a superposition state, is decreased by the presence of the light particle. We will
interpret the decreasing of interference as a sign of a more classical behaviour of the heavy
particle.

The reduced density matrix for the heavy particle in the spatial coordinates representation
is the positive, trace class operator p°(¢) in L%(R?) with Trp®(t) = 1 with integral kernel

pf(t; R, R = /3 drWé(t; R, r)We(t; R, r) (71)
R

where We(¢; R, r) is the solution of problem (13) and (14).
In the small mass ratio limit, using the results contained in theorem 1.1, one easily obtains
the following approximation for the density matrix (71):

,Oa (t) — efitH()pu eltHn (72)
where

oG (R, R) = ¢(R)@(R)IZ(R, R") (73)

Z(R, R) = (@) 'x. (2F) %), (74)

It is easily seen that the following proposition holds

Proposition 3.1. Under the same assumptions of theorem 1.1 one has

1 e\
Tr | o (1) — p° (1) gA(;) + Be (75)
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Without interaction the dynamics of the heavy particle is described by the free evolution of
the density matrix po(R, R') = ¢(R)@(R’). Being po(R, R’) a projector operator one has

Tr(p (1)) = Tr(py)* = 1. (76)

The amount of entanglement due to the interaction at the order of approximation of the Joos
and Zeh formula is expressed by the term Z(R, R’) in the initial density matrix. Given the

unitarity of the operators (Qf)71 it is obvious that for R # R’ one has |Z(R, R')| < 1. This
implies that

Tr(p®(1)> = Tr(pg)” < 1 (77)

which in turns means that the reduced density matrix (72) describes a mixed state.

. . . o 1.
In addition to these immediate consequences of the unitarity of (Qf ) it is in principle
possible in our specific model to compute explicitly Z(R, R').
. o . - —1 .
Given the unitarity of the Fourier transform and the definition of (Qf ) we can write

I(R, R = (Ffx, F¥x). (78)
‘We introduce the notation
FR=F+Kg (79)

where F is the usual Fourier transform and Ky is the operator

dr e—ikR  Gilkllr—RI

[Kex)k) = [ e T L (80)
with this notation

Z(R, R") = (. )+ (Krx, Fx) + (Fx, Krx) + (Krx, K X). (81)
Note that because the unitarity of (2%)~!, Z(R, R) = (x, x) and (81) implies

(Krx, Fx)=—(Fx, Krex) — (Krx, Kgx)- (82)

To get an estimate for the amount of decoherence we consider a normalized state (x, x) = 1
and compute the quantity 1 — Z(R, R’). From (81) and (82) we obtain

1 —Z(R,R") = (Fx,(Kr — Kp)x) + (Krx, (Kr — Kr) X). (83)

We will analyse (83) in the particular relevant case in which the initial state of the light particle
is given by a symmetric wave packet centred at the origin; in particular let us choose

e 20
x(r) = T (84)
(ro?)s
We will address our efforts to the special case in which R” = —R and we will evaluate
Z(R, —R). It is easy to see that for every state such that x (r) = x(—r)
(Fx,(Kr —K_p)x) =0. (85)

Under the same assumption on y (r) the second term on the rhs of (83) can be written as

dk 1 kR
Kpx,(Krp — K_ =
(Krx, (Kgr R)X) /1;3 @) Gma) + kP

e—ilklir| ellkllr]
x/ dr 7(r+R)/ dr’ x(# +R). (86)
R? 7] R?

r il
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Figure 1. The dotted plot shows the numerical solution of equation (89), the continuous line
represents the theoretical behaviour of large R.

The two integrals in » and »’ on the rhs of the last expression are one the complex conjugate
of the other. Using the specific form (84) of x (r) we obtain

eilklIr] 2 ; o’ 2 2| . _ 2
'/dr | X +R)| =272 —— e W |eMIRlerf(z) + e IRl erf(z) — 2isin k|| R]
r

| IR|?
87
where
IR| +ilk|o?
= —F.
V2o
Inserting this in (86) and integrating on the angular part of k£ we have
3 o0 k|? in(2|k||R
1= TR, R = —2 [ q)— " | - SCIKIR] ) oo
IRI>V/7 Jo (4ra)? + k| 2|k[|R]
. L 2
x e“k”R‘erf(z)+e_'|k”R'erf(z)—2isin|k||R|‘ . (88)

Expression (88) clearly shows that for every R one has 1 —Z(R, —R) > 0, moreover it is easy
to see that, for fixed R, 1 — Z(R, —R) is a decreasing function of «. For this reason we focus
our attention on the evaluation of (88) when o = 0.

We define the dimensionless variables & = |k||R| and R = Igﬂ. With this notation one
has

| _ TR —R) — ;/wds (1_ sin(zs))e;jz
’ CRPVT Jo 28

e erf (% + %%) +e erf (% — %%) — 2isin&

Analysing the asymptotics of the positive integral in (89) it is easy to check that 1 —Z(R, —R)
tends to zero as 1/R? when R grows to infinity, and as R when R tends to zero.

Itis more interesting to investigate the range of values of R for which quantum interference
is expected. The integral in (89) is not computable in closed form; its numerically computed
behaviour as a function of the parameter R is given in figure 1.

2

X . (89)
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Together with the initial state (84) for the light particle, let us consider an initial state of the
heavy particle which is a coherent superposition of two wave packets concentrated in regions
symmetrically placed around the origin, at a distance |R| each one with average momentum

=+ po heading towards the origin. At a time approximatively given by the classical flight time
I‘piol\ one expects quantum interference to take place for distances of the order of the dispersion

of the two-wave packets. Formula (73) for the approximate initial density matrix suggests that
if o is of the same order of the distance of the wave packets a maximum decoherence effect
will take place.

As was mentioned in the introduction, Joos and Zeh, in their seminal paper on the subject
[1], proceeded from the single scattering event towards the analysis of the decoherence effects
induced on the heavy particle by the interaction with a gas of light particles.

In the case of a large number of non-interacting light particles one expects to be able to
prove a generalization of theorem 1.1 in the direction suggested by Joos and Zeh. In turn this
would imply a decoherence effect which is exponentially increasing with the number of the
particles of the environment.

Although conceivably true on a heuristic basis, the above-mentioned result is not easy
to prove, taking into account the complete Schrodinger dynamics. In fact the light particles
are coupled through the heavy one, in the sense that the dynamics is not factorized in any
coordinate system.
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